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Photonic bands and normal mode splitting in optical lattices interacting with cavities
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The strong collective interaction of atoms with an optical cavity causes normal mode splitting of the cavity’s
resonances, whose width is given by the collective coupling strength. At low optical density of the atomic cloud,
the intensity distribution of light in the cavity is ruled by the cavity’s mode function, which is determined solely
by its geometry. In this regime the dynamics of the coupled atom-cavity system is conveniently described by
the open Dicke model, which we apply to calculating normal mode splitting generated by periodically ordered
clouds in linear and ring cavities. We also show how to use normal mode splitting as a witness for Wannier-Bloch
oscillations in the tight-binding limit. At high optical density the atomic distribution contributes to shaping
the mode function. This regime escapes the open Dicke model, but can be treated by a transfer matrix model
provided the saturation parameter is low. Applying this latter model to an atomic cloud periodically ordered into
a one-dimensional lattice, we observe the formation of photonic bands gaps competing with the normal mode
splitting. We discuss the limitations of both models and point out possible pathways to generalized theories.
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I. INTRODUCTION

Popular models concerned with the interaction of large
atomic ensembles with light modes are the open Dicke model
(ODM) [1–3], the coupled dipole model (CDM) [4–6], and
the transfer matrix model (TMM) [7]. Every model focuses
on a different aspect of the coupled system and to this end
applies a different simplifying assumption. Its applicability
therefore depends on the regime in which the coupling is
investigated, for example, weak or strong collective coupling,
small or large saturation, and low or high optical density.
Each approach has its limitations, advantages, and disad-
vantages and its preference depends on the focus of the
investigation.

The ODM has been highly useful for unraveling how
atomic ensembles collectively interact with single light
modes. The predictions of super- and subradiance are promi-
nent examples [1,8,9]. The basic idea underlying the model
is that the atoms are indistinguishable with respect to their
interaction with the light mode, so excitation of an individual
atomic spin can be described as a step up the ladder formed
by the eigenstates of a collective spin. This trick permits a
dramatic reduction of the dimension of the collective Hilbert
space, but the price to pay is a loss of individual addressability
of the atoms. Furthermore, the ODM only applies to situations
in which the coupling strength between the light mode and an
atom solely depends on its location within the mode volume,
but not the location or dynamics of the other atoms. This
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precludes the applicability of the ODM to optically dense
clouds. Nevertheless, the dynamics of atomic clouds inter-
acting with the light modes supported by optical cavities is
usually described by the ODM [10–12].

On the other hand, the TMM is a linear model describ-
ing one-dimensional propagation of light through consecutive
layers of scatterers or optical elements, which can be optically
dilute or dense, and has been successfully applied to describe
Bragg reflection and the formation of forbidden photonic
bands in one-dimensional optical lattices generated by two
counterpropagating laser beams in free space [13–15]. It is a
characteristic of optical cavities to enforce a one-dimensional
geometry, which is for many systems a sufficient approxima-
tion. Furthermore, laser-pumped cavities can sustain optical
lattices. It is thus an interesting question to what extent the
TMM can be applied to interacting atom-cavity systems and
identify circumstances in which it even reaches beyond the
ODM, especially in cases where atomic (dis)ordering is ex-
pected to have an impact on the coupled dynamics or when
the atomic cloud is optically dense.

Finally, the CDM has been fruitfully applied to phenomena
in the limit of weak excitation, particularly to situations where
the arrangement of atoms in space (ordered or disordered)
plays an important role [16,17]. While the CDM has facili-
tated studies of single-photon super- and subradiance in large
clouds of atoms [18,19], it is more difficult to accommodate
with the presence of surfaces or even cavities. Although we
will not use the CDM in this work, it is worth pointing out
that it is possible in principle to include macroscopic boundary
conditions [20,21] and to extend the model into regimes of
strong excitation [22].
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In this work, considering specific experimental situations,
we compare the ODM and the TMM when applied to atoms
trapped within the optical mode of a linear cavity and a ring
cavity in order to illustrate their capabilities and limitations.
We report three main results.

(i) Resolved normal mode splitting of cavity resonances
indicates strong collective atom-light interaction. Applying
the ODM to periodically ordered atoms in a linear and in a
ring cavity, we calculate the dependence of the normal mode
splitting on the lattice constant. We find that, in both cases,
the dependence is fully characterized by a single complex pa-
rameter, which is the bunching parameter. Hence, measuring
the bunching parameter via observation of the normal mode
splitting yields information on the periodic ordering, which
can be exploited to monitor variations of the periodic ordering,
e.g., due to Bloch oscillations [23].

(ii) We apply the TMM to periodically ordered atoms in
a linear cavity and extend the model to ring cavities. We
benchmark the model with the ODM in the limit of low
optical density of the atomic cloud, but we also show that
the validity of the TMM reaches the regime of high optical
density, inaccessible to the ODM. Indeed, while the ODM
presupposes that the atoms only interact via their coupling to
the same mode function of the cavity [24], in dense clouds
the atoms can interact by exchanging photons directly, thus
bypassing the cavity mode. A dense and disordered atomic
cloud will, due to absorption, shape the intensity profile along
the cavity’s optical axis producing a shadow on atoms located
further downstream the light beam’s energy flux. If a cloud
is dense and periodically ordered, we expect the formation
of photonic stop bands, i.e., frequency bands inside which
the propagation of light is prevented [13–15,25–30]. Inside
the optical lattice the light intensity can be considerably en-
hanced due to multiple Bragg reflections, while behind the
lattice it is attenuated. Thus, in the optically dense regime the
atomic cloud participates in shaping the mode structure with
dramatic impact on the normal mode spectra of the coupled
atom-cavity system. While these features are grasped by the
TMM, it is nonetheless important to point out that the TMM
does not allow incorporation of effects due to saturation or
feedback.

(iii) The coupled atom-cavity system intertwines three
manifestations of photonic stop bands: the cavity spectrum
itself described by an Airy function, the normal mode split-
ting resulting from cavity-atom interaction, and finally the
photonic band gap (PBG) resulting from multiple-path inter-
ference of the light propagating inside the optical lattice. Paths
covering different distances inside the lattice correspond to
different round-trip times in the cavity. We will discuss how
the cavity can be employed to filter particular paths out of
the manifold. At the end, we will discuss the limitations of
the presented models and suggest possible extensions toward
more general theories.

The paper is organized as follows. In Sec. II, based on the
ODM, we present simulations for optical lattices suspended in
linear and ring cavities focusing on parameter regimes where
the TMM yields identical results. Section II A introduces the
model. In Sec. II B we show simulations of normal mode
splitting as a function of atomic bunching and debunching
caused by incommensurate lattices and thermal spreading and

compare them with previous results [12]. Section II C
proposes a possible application for the detection of Wannier-
Bloch oscillations in the tight-binding regime [23]. In
particular, we will show that the spreading of atomic wave
packets over several lattice sites can be probed via Bragg
reflection.

Section III focuses on the TMM for optical lattices in linear
and ring cavities, showing simulations in parameter regimes
where the TMM yields results differing from those obtained
with the ODM. In Sec. III A we work out the link between the
models and in Secs. III B and III C we expose the linear and
the ring cavity transfer matrix formalism, respectively.

In Sec. IV A we discuss the propagation of light through
a cavity filled with a dense cloud and in Sec. IV B the inter-
action of PBGs with cavities, showing that the cavity filters
out specific beam paths traversing the optical lattice, thus
allowing for a spectral analysis of the PBG. The paper con-
cludes in Sec. V with a comparison of the ODM and the
TMM and briefly points out possible pathways toward a com-
plete quantum model holding for the saturated dense cloud
regime.

II. OPEN DICKE MODEL

Ring cavities are fundamentally different from linear cavi-
ties in many ways. First of all, they support two energetically
degenerate counterpropagating modes that share the same
mode volume. As long as the modes are not coupled, their
photon budgets remain independent. Furthermore, photon
backscattering processes conserve momentum, so that the
photon number on each degenerate mode is coupled to the
momentum state of an atom trapped within the cavity mode
volume. If pumped by laser light in only one direction, the
light intensity along the ring cavity’s optical axis is almost
constant over long distances. Hence, a laser beam far detuned
from an atomic resonance generates a one-dimensional con-
stant dipolar potential capable of trapping a uniform atomic
cloud. On the other hand, with light of wavelength λlat in-
jected from both sides into the cavity, a standing light wave
with periodicity λlat/2 is formed, which can confine a cold
atomic cloud with nearly perfect periodic ordering in a one-
dimensional (1D) optical lattice aligned with the cavity’s
optical axis. Figures 1(a) and 1(b) show possible geometries
for linear and ring cavities and Fig. 1(c) illustrates the atomic
density distribution over the optical lattice at finite tempera-
ture.

A. Weak excitation and the role of atomic bunching
in linear and ring cavities

The strength of the collective interaction between an
atomic cloud and a cavity depends not only on the number
N of atoms but also on their individual coupling to the cav-
ity’s mode function through their location z j along the cavity
axis. The mode function of linear cavities is sinusoidally
modulated with a periodicity determined by the wavelength
of a probe laser irradiated in resonance with a cavity mode
and not far away from an atomic transition, λ = 2π/k. For
ring cavities the mode function has translationally invariant
amplitude. Note that the mode volume can also depend on
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FIG. 1. (a) Scheme of a linear cavity laser pumped at a rate
η and afflicted by losses occurring at a rate κ and containing an
optical lattice of cold atoms. (b) Scheme of a ring cavity with two
counterpropagating modes rotating in the clockwise (+) and coun-
terclockwise directions (−). (c) Illustration of the atomic distribution
in three adjacent sites of an optical lattice.

the electronic state of the atoms [31]. We now define atomic
bunching parameters

b0 ≡ 1

N

N∑
j=1

cos2 kz j, b± ≡ 1

N

N∑
j=1

e±2ikz j (1)

for the linear and the ring cavity, respectively. These pa-
rameters measure the longitudinal overlap of the periodically
ordered atomic cloud with the cavity mode function at the res-
onant wavelength λ. For example, for a cloud homogeneously
distributed along the cavity axis we get b0 = 1

2 and b± = 0.
In contrast, perfect bunching means that all atoms have the
same distance modulo the lattice period 2(zi − z j )/λlat ∈ Z.
In such cases, we find b0 = cos2 kz j = cos2 kz0 and b± =
e2ikz j = e2ikz0 , where z0 represents the distance between the
position of any atom and the nearest point of the zero spatial
phase of the light field.

In addition to the positions of the atoms z j , the degrees
of freedom of the coupled atom-cavity system include the
amplitudes of the intracavity light, which are treated as clas-
sical fields and denoted by α for the linear cavity and α±
for the two counterpropagating modes of a ring cavity. They
are normalized to the electric field E1 generated by a single
photon in the cavity mode, so |α|2 denotes the average number
of photons. We do not consider atomic motion or photonic
recoil, assuming the optical lattice potential to be so deep and
the binding so tight that the atomic motion is not affected
by the probe light. The equations of motion describing the
coupled system can be derived in various ways. One approach
is to formulate the collective Dicke Hamiltonian for N atoms
interacting with one or two counterpropagating cavity modes
[see, for example, Eq. (11) in Ref. [12]], identify the relevant
dissipation mechanisms, and solve the master equation of the
so-called open Dicke model [1–3]. By neglecting any type of
quantum correlation and seeking stationary solutions, we find

expressions which allow us to calculate the intracavity light
fields for given atomic positions in linear cavities,

∑
j

−Uγ α cos2 kz j

1 + 2|Uγ /g|2|α|2 cos2 kz j
= iη − �κα, (2)

and for ring cavities [expression (22) of Ref. [12]],

∑
j

−Uγ (α± + e∓2ikz j α∓)

1 + 2|Uγ /g|2|eikz j α+ + e−ikz j α−|2 = iη± − �κα±, (3)

where we defined the abbreviations

Uγ ≡ U0 − iγ0 ≡ g2

�a + i	/2
, �κ = �c + iκ. (4)

Here 	 is the decay width of the atomic transition, �a is the
laser detuning from the atomic transition, κ is the cavity’s
field amplitude decay width, �c is the laser detuning from
the nearest mode of the empty cavity, U0 and γ0 are real
parameters proportional to the real and imaginary parts of
the atomic linear electrical susceptibility, respectively, and g
is atom-field coupling strength (equal to half the one-photon
Rabi frequency),

2g = 1

h̄
dE1 =

√
3π	ω

2k3Vm
=

√
6	δFSR

k2w2
, (5)

where d is the electric dipole moment of the atomic transition,
Vm = π

2 Lw2 is the cavity mode volume, L is the cavity length,
w is the Gaussian beam waist, and δFSR is the free spectral
range given in hertz (δFSR = c/2L for a linear cavity and
δFSR = c/L for a ring cavity). Finally, η and η± are cavity
pump rates proportional to the amplitudes of incident laser
light, η = αin

√
κδFSR. Apart from g, a second important pa-

rameter ruling the atom-light interaction is the single-atom
cooperativity

ϒ = 4g2

κ	
= F

π

6

k2w2
, (6)

where F ≡ πδFSR/κ is called the finesse of the cavity.
Equations (2) and (3) are nonlinear in the field amplitudes

α and α±, respectively, and can only be solved analytically for
particular cases, such as perfect atomic bunching or totally ho-
mogeneous clouds [12]. Another analytically accessible case
is low saturation, that is, |Uγ α±/g| � 1. Then the denomina-
tors of the formulas (2) and (3) become equal to 1, and for the
linear cavity we get immediately the solution

α = iη

�κ − NUγ b0
, (7)

while for a ring cavity

α± = iη±(�κ − NUγ ) + iη∓NUγ b∓
(�κ − NUγ )2 − N2U 2

γ |b+|2 . (8)

We will soon see how the imminent role of atomic bunching in
the expressions (7) and (8) determines the shapes of transmis-
sion, reflection, and absorption spectra of the cavities. They
are calculated from the amplitudes of the intracavity fields
α and α±, respectively, referenced to the maximum power
|η/κ|2, which is reached for resonant pumping of the empty
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cavity,

T =
∣∣∣∣κα

η

∣∣∣∣
2

, R =
∣∣∣∣1 − κα

η

∣∣∣∣
2

, A = 1 − T − R (9)

for the linear cavity and

T± =
∣∣∣∣κα±

η+

∣∣∣∣
2

, R± =
∣∣∣∣η±
η+

− κα±
η+

∣∣∣∣
2

, (10)

A =
∑
±

(
η±
η+

− T± − R±

)

for the ring cavity. We choose to normalize every transmission
and reflection with the intensity |η+|2 of the light pumped into
the cavity mode α+ because the examples to be discussed in
the following assume either η− = 0 or η− = η+. The trans-
mission and reflection spectra are measured at the output ports
indicated in Figs. 1(a) and 1(b).

1. Parameter regimes for the simulations

For the sake of specificity, throughout the paper we
consider parameters close to those realized in our own ex-
perimental apparatus [12,32], which is dedicated to studies
of the interaction between ultracold strontium clouds and a
ring cavity. The probe laser (frequency ω) is tuned close to
the 1S0−3P1 intercombination line at λa = 689 nm in stron-
tium atoms, whose transition linewidth is 	 = 2π × 7.4 kHz.
The ring cavity is characterized by a mode beam diameter
of w ≈ 70 µm, a finesse of F = 1500, a free spectral range
on the order of δFSR � 106	/2π , an amplitude decay rate
of κ = 2π × 3.4 MHz, and an atom-cavity coupling strength
of roughly g � 	. Typically, N ≈ 200 000 atoms are stored
in the standing light wave potential formed inside the ring
cavity when it is pumped, in both directions, with laser light
tuned to a cavity mode which can be very far away from
the probe laser mode. The atoms then organize into a one-
dimensional optical lattice with a periodicity given by half the
resonant wavelength λlat/2, where they are then distributed
over some Ns ≈ 300 antinodes. While most parameters will
be kept fixed throughout the paper, others will be varied, in
particular the coupling strength g, the finesse F of the cavity,
its configuration (linear or ring cavity), and the detunings
of the probe laser from the atomic resonance �a = ω − ωa,
from the nearest cavity mode �c = ω − ωc, and from the
lattice laser �lat = ω − 2πc/λlat. Obviously, all results can be
generalized to other atoms and arbitrary cavities.

By the fact that κ 	 	, our ring cavity operates deep in
the so-called bad cavity limit. From a technical point of view,
an interesting advantage of narrow atomic transitions is that
a light frequency that is sufficiently detuned from atomic
resonance to avoid spontaneous emission may still be within
the cavity’s free spectral range. Hence, we can conveniently
create not only a conservative dipolar light wave potential on
adjacent cavity modes but a standing light wave potential, i.e.
an optical lattice, whose periodicity is nearly commensurate
with the wavelength of resonant probe light. This is interest-
ing, e.g., for the creation and study of photonic band gaps
[13,15,30].

FIG. 2. (a) Dependence of the bunching parameters on the lattice
wavelength (bottom axis) and on the lattice detuning scaled to the
free spectral range (top axis). The blue curve holds for a linear cavity
with kz0 = 0 and the green curve with kz0 = π/2. The red curve
holds for a ring cavity. The parameters are specified in Sec. II A 1.
(b) Dependence of the bunching parameter for a ring cavity on
temperature for a lattice detuning fixed to �lat = 0. The parameters
are as specified in Sec. II A 3.

2. Debunching caused by incommensurate optical lattices

The transmission and reflection spectra obtained from
Eqs. (7) and (8), respectively, critically depend on the degree
of atomic bunching. Debunching of the atomic cloud can be
caused by thermal motion (we will analyze this in the next
section), but it can also be caused by an optical lattice whose
periodicity is incommensurate with the wavelength of the
probe light, λ 
= λlat. For a linear cavity, assuming that the
atoms are with zero temperature, i.e., located at the bottom
of the standing wave potential, and equally distributed over
Ns lattice sites, we describe this type of debunching by setting
z j = jλlat/2 + z0 in Eq. (1),

b0 = 1

Ns

(Ns−1)/2∑
j=(1−Ns )/2

cos2( jkλlat/2 + kz0)

= 1

2
− cos 2kz0

2Ns

sin Ns
2 kλlat

sin 1
2 kλlat

, (11)

and for a ring cavity by

b± = 1

Ns

(Ns−1)/2∑
j=(1−Ns )/2

e±2i( jkλlat/2+kz0 )

= e±2ikz0

Ns

sin Ns
2 kλlat

sin 1
2 kλlat

. (12)

The additional factor kz0 allows us to shift the overall phase of
the optical lattice. The dependences of the bunching parame-
ters on the lattice detuning �lat are shown in Fig. 2(a). Note
that for small detunings

sin Ns
2 kλlat

Ns sin 1
2 kλlat

� sinc Ns

(
π − kλlat

2

)
. (13)

3. Debunching caused by finite temperature

Until now we described the atomic layers of the optical
lattice as perfectly thin infinite planes with transversally uni-
form density. However, when the atomic cloud is at finite
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temperature, the layers in each lattice site will have a finite
extension along the optical axis [see Fig. 1(c)] whose width is
given by the temperature of the cloud,

z̄ = 1

k

√
2kBTat

V0
, (14)

where V0 is the depth of the optical lattice potential.
To calculate the temperature-induced reduction of the

bunching parameter for an optical lattice extending over Ns

sites, we assume a smooth longitudinal Gaussian density dis-
tribution modeled by

n(z) = N

Nsz̄
√

2π

(Ns−1)/2∑
j=(1−Ns )/2

e−(z− jλlat/2)2/2z̄2
(15)

and normalized to the total atom number N . For a linear cavity
the bunching parameter is now given by the overlap integral

b0 = 1

N

∫ ∞

−∞
n(z) cos2(kz + kz0)dz

= 1

2
− cos 2kz0

2Ns

sin Ns
2 kλlat

sin 1
2 kλlat

e−2k2 z̄2
. (16)

Similarly, for a ring cavity the bunching parameter is given by
the structure factor,

b± = 1

N

∫ ∞

−∞
n(z)e±2i(kz+kz0 )dz

= e±2ikz0

Ns

sin Ns
2 kλlat

sin 1
2 kλlat

e−2k2 z̄2
. (17)

The Gaussian prefactor in the expressions (16) and (17) is
known as the Debye-Waller factor in crystallography.

Figure 2(b) shows the decrease of the bunching parameter
with rising temperature for the case �lat = 0. Assuming a
temperature of Tat = 1 µK and V0 = h × 100 kHz, which are
typical values, we find kz̄ ≈ 0.2. This spread in position de-
grades the periodicity of the optical lattice with a potentially
important impact on absorption and phase shifts. Neverthe-
less, for the sake of clarity, we will assume negligible thermal
disorder, i.e., Tat = 0, for all calculations presented in the
following except for those presented in Sec. IV A 2.

B. Simulations of normal mode splittings

Figure 3 shows transmission, reflection, and absorption
profiles (obtained by scanning �c) for various detunings �lat

of the lattice wavelength calculated for a linear cavity from
Eq. (7). The normal modes appear as two distinct ridges
with variable distance. The amount of normal mode splitting
clearly depends on atomic bunching. For Figs. 3(a)–3(c) the
atoms are localized at antinodes of the cavity mode when
�lat = 0 and for Figs. 3(d)–3(f) at nodes.

1. Normal mode splitting in a ring cavity pumped
in one or both directions

Figure 4 shows similar spectra as Fig. 3 but for a ring
cavity laser pumped in one or both directions. The spectra are
calculated from Eq. (8) using the ODM.

FIG. 3. Transmission T , reflection R, and absorption profiles
A = 1 − T − R for various detunings of the lattice wavelength for
a linear cavity. For the curves at �lat = 0 all atoms are located
at (a)–(c) an antinode of the optical lattice, kz j = 0, and (d)–(f) a
node kz j = π/2. All curves are calculated from Eq. (7) using the
ODM, but we note that using Eq. (42) derived from the TMM, we
obtain exactly the same curves for the chosen parameters: �ca = 0,
N = 5 × 105, and Tat = 0. All other parameters are as specified in
Sec. II A 1.

The symmetric pumping case closely reproduces the situ-
ation of a linear cavity. Figures 4(a)–4(c) are calculated for
atoms that are perfectly bunched and all located at antin-
odes of the optical lattice. The spectra directly compare to
Figs. 3(a)–3(c). For perfectly bunched atoms, all located at
nodes (not shown), we obtain spectra similar to those shown
in Figs. 3(d)–3(f).

In contrast, the normal mode spectra in the unidirectionally
pumped ring cavity deserve some extra discussion. We again
start from Eq. (8). For simplicity, we neglect spontaneous
emission, γ0 = 0, in the remaining part of this section, which
is justified in the bad cavity limit. In the case of a uniform
atomic distribution b = 0, the expression simplifies to

α+ = iη+
�c − NU0 + iκ

, α− = 0. (18)

This expression predicts standard normal mode splitting with
two peaks and has been used, e.g., in [33]. In Figs. 4(d)–4(f)
this corresponds to |�lat| → ∞, which is the regime where the
lattice is totally incommensurate with the probe mode, so the
atoms can be considered as complete debunched. We observe
peaks that, in resonance (�ca ≡ �c − �a = 0), are located at
|�c| = g

√
N .
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FIG. 4. Same as Fig. 3 but for (a)–(c) a ring cavity symmetrically
pumped from both sides, η− = η+, with the atoms sitting at nodes
when �lat = 0, and (d)–(f) for a ring cavity pumped from one side
only, η− = 0. The absorption is calculated as A = 1 − T+ − T− −
R+ − R−. Again, we stress that the TMM delivers identical solutions
via Eqs. (63) and (65).

Let us now concentrate on perfect bunching b± = e±2ikz j =
e±2ikz0 and again look at the expression (8) for the case of one-
sided pumping η− = 0. In this case, the transmission profiles
become more complicated, exhibiting up to four peaks. To
understand the physical origin of the additional central peak
near �c = 0 in Figs. 4(d)–4(f), we combine the two counter-
propagating modes (8) to a symmetric and an antisymmetric
one, respectively,

α+ + α−e−2ikz0 = iη+�κ

(�κ − NU0)2 − N2U 2
0

,

α+ − α−e−2ikz0 = iη+(�κ − 2NU0)

(�κ − NU0)2 − N2U 2
0

. (19)

If the probe laser is kept in resonance with the cavity �ca = 0,
the symmetric mode fully couples to the atoms, thus generat-
ing maximum normal mode splitting, while the antisymmetric
mode does not couple to the atoms and the corresponding
normal mode is not split. We observe peaks that in resonance
are located at |�c| = g

√
N . For imperfect bunching (�lat 
= 0)

the symmetric and antisymmetric modes get mixed and both
exhibit a certain amount of normal mode splitting, which
explains the appearance of four normal modes in Figs. 4(d)–
4(f) in the region of intermediate debunching |�lat|/2πδFSR =
0, . . . , 150. At large debunching the disorder is such that
the distinction between symmetric and antisymmetric modes
becomes meaningless. In this sense, the spectrum in Fig. 4(d)

FIG. 5. Normal mode spectra for a ring cavity, as Fig. 4, but now
plotted as a function of laser-atom detuning �a ≡ ω − ωa and atom-
cavity detuning �ca ≡ ωa − ωc for (a)–(c) perfect bunching �lat =
0 and (d)–(f) complete disorder. The parameters are the same as in
Fig. 4 except for �lat = 200 × 2πδFSR and N = 2 × 105. Note that
the same curves are obtained from the TMM.

can be understood as a linear combination of spectra such as
those shown in Figs. 3(a) and 3(d).

2. Avoided crossing curves

Plotting normal mode spectra for a unidirectionally
pumped ring cavity as a function of �ca and �a, we obtain
Fig. 5. Figures 5(d)–5(f) correspond to a totally disordered
atomic cloud and show normal mode spectra similar to the
ones observed in [12] for the same set of parameters. How-
ever, as we assume low saturation in our present model, we
are missing the bistable features observed in that work. A
comparison between Figs. 5(b) and 5(e) reveals that, if the
atoms are not bunched, only a very small amount of light is
backscattered, while for high bunching Bragg reflection from
the lattice generates a large backscattered amplitude. Indeed,
in that work the atoms were not arranged in a lattice but
distributed along a running wave optical dipole trap generated
by a cavity mode, so the resonant ridges seen in Fig. 5(e) were
too weak to discern.

C. Detection of Bloch oscillations in the tight-binding regime
with coupling to a cavity

The dependence of the normal mode splitting on the num-
ber of atoms coupled to the cavity mode function can be
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FIG. 6. Illustration of the Wannier-Bloch ladder in a lattice
which is incommensurate with the probe wavelength. Under the
action of an external force Fext, atoms in every lattice site will tem-
porarily spread out to adjacent sites.

exploited as a monitor for the time evolution of the atomic
distribution along the cavity’s optical axis. While this seems
obvious for a linear cavity, whose mode function is spatially
modulated, it is less so for a ring cavity. In this section we will
show how to probe the atomic distribution in a unidirection-
ally pumped ring cavity via Bragg reflection.

When subjected to an external force, ultracold atoms
confined in a lattice undergo Bloch oscillations [34]. A par-
ticularly interesting regime is the tight-binding limit [23,35],
where the atoms coherently tunnel to neighboring lattice sites
periodically spreading and refocusing their wave packets.
Cavities have been proposed to monitor nondestructively the
oscillatory dynamics [23,29,36,37]. By selecting a lattice pe-
riod that is incommensurate with the wavelength of the light
probing the cavity, as illustrated in Fig. 6, the degree of atomic
bunching can be made to depend on the extent of wave packet
spreading.

The Wannier-Stark states, which are the eigenstates of
the periodic potential containing the periodic potential plus
the external force field, are orthonormal [35]. However, this
breaks down in the presence of a cavity. After spreading,
only the overlap between the Wannier-Stark states and the
cavity mode function couples to the cavity. Let us consider
an initially bunched distribution of uncorrelated atoms along
the optical axis of the cavity so that the expansion of the
Wannier-Stark states in the Wannier state basis initially reads
|ψn(0)〉 = ∑

j c j (0)|n, j〉, where |n, j〉 is the Wannier state
labeled by the nth Bloch band and the jth lattice site and
c j (0) ∝ cos2( jkλlat/2), where λlat/2 is the periodicity of the
lattice in which the atoms perform their Bloch oscillations.
The Bloch oscillations correspond to a coherent evolution
described by

|ψn(t )〉 = Uj j′ (t )|ψn(0)〉, (20)

where [35]

Uj j′ (t ) = ei( j− j′ )(π−ωBlot )/2−i j′ωBlot J j− j′

(
2ν sin

ωBlot

2

)
(21)

is the unitary evolution operator generating the Wannier-
Bloch oscillations, with Jj− j′ denoting Bessel functions and
ωBlo = Fextλlat

2h̄ the Bloch oscillation frequency.

FIG. 7. Wannier-Bloch oscillations of atoms in a deep lattice. (a),
(c), (e), and (g) The cloud is initially located in a single lattice in the
center of the optical lattice j = 0. (b), (d), (f), and (h) The cloud is
equally distributed over Ns = 80 lattice sites separated by � j = 2
and centered at j = 0. (a) and (b) Spreading and refocusing of the
atom distribution over lattice sites upon Wannier-Bloch oscillations
with ν = 8 and (c) and (d) corresponding bunching parameters. Also
shown are the normal mode transmission spectra (e) and (f) T+ and
(g) and (h) T− for a ring cavity varying over time. The parameters are
N = 2 × 106, �lat = 0 = �ca, and as specified in Sec. II A 1. The
same curves are obtained from the TMM.

Figure 7(a) shows the periodic spreading and refocusing
of one atom (or several atoms) initially located at a single
lattice site labeled j = 0. The maximum spreading ν (in units
of the number of lattice sites j) is given by the ratio between
the acceleration force Fext and tunneling rate, which can be
calculated from the energy spectrum of the optical lattice
[35]. In a homogeneously populated lattice, Wannier-Bloch
oscillations do not change the numbers |c j (t )|2 of atoms in
each lattice site, because loss and gain of atoms are balanced
for every individual lattice. On the other hand, if the lattice
sites initially contain different atom numbers, the Wannier-
Bloch oscillations can lead to a time-dependent normalized
population |c j (t )|2. As an example, Fig. 7(b) shows a situation
in which every fourth lattice site between j = −40 and 40
contains a number of 4N/Ns atoms, while |c j (0)|2 = 0 for the
other sites.
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While in free space, the distribution of atoms over lattice
sites is normalized to the total atom number

N =
(Ns−1)/2∑

j=(1−Ns )/2

|c j (t )|2, (22)

with c j (t ) ≡ 〈n, z j |ψn(t )〉. In a cavity the effective atom num-
ber contributing to normal mode splitting depends on the
overlap with the cavity’s mode function

Neff(t ) = Nbμ(t ), μ = 0,±. (23)

Hence, within the ODM the impact of Wannier-Bloch oscil-
lation is resumed in a time-dependent bunching parameter,
which generalized from (11) becomes for a linear cavity

b0 = 1

N

(Ns−1)/2∑
j=(1−Ns )/2

|c j (t )|2 cos2( jkλlat/2 + kz0) (24)

and generalized from (12) for a ring cavity

b± = 1

N

(Ns−1)/2∑
j=(1−Ns )/2

|c j (t )|2e±2i( jkλlat/2+kz0 ). (25)

Figures 7(c) and 7(d) show the variation in time of the
bunching parameter as the atoms undergo the Wannier-Bloch
oscillations shown in Figs. 7(a) and 7(b). Following the pro-
posal of Ref. [23], this time-varying bunching can be detected
by monitoring the normal mode splitting of the transmission
spectrum of a linear cavity.

In a ring cavity the mode functions are translationally
invariant, so when the cavity is pumped from one side, one
might expect that the atomic positions should have no impact
on normal mode splitting. This is indeed true for the transmis-
sion signal T+, as seen in Figs. 7(e) and 7(f). However, atomic
bunching engenders coupling between the counterpropagating
cavity modes via Bragg reflection. The pumped mode α+
interacts with the reverse mode α− at a coupling strength
given by NbμU0. Consequently, if the probe light frequency
is sufficiently close to a normal mode, at any instants of time
in which the Wannier-Bloch oscillations generate bunching,
light is backscattered from the pumped mode α+ into the
mode α−. The interaction of this backscattered light with the
atoms generates normal mode splitting which can be observed
in the signal T−, as shown in Figs. 7(g) and 7(h). When the
probe light is detuned from the normal modes, the coupling
only leads to a phase shift of the mode α+, which can be
detected by homodyne techniques.

In practice, the atomic cloud could be prebunched in a
deep lattice with periodicity λlat = m

n λ, where m, n ∈ Z are
small integer numbers. The lattice depth is then adjusted such
that the atoms perform Bloch oscillations in the tight-binding
regime. The reflection of a probe laser injected into one ring
cavity mode then monitors the normal mode splitting.

III. TRANSFER MATRIX MODEL

All calculations and simulations presented so far were de-
rived from the open Dicke model based on the assumption
that the atomic cloud is optically dilute, i.e., has low optical
density (less than 1), and that the intracavity light intensity

does not saturate the atomic transition, i.e., |α| < 	/2g. For
the parameters used (small enough atom numbers N and lat-
tice sites Ns and highly reflecting mirrors, Rmir = 99.8% being
the mean reflectivity of all mirrors) both the ODM and the
TMM yield identical results, that is, all graphs generated so
far are perfectly reproduced by the TMM. However, outside
this parameter regime, the two models begin to diverge.

Indeed, for high optical densities greater than approx-
imately 1, such as those achieved in the experiment of
Ref. [12], the ODM reaches its limitations. In this regime,
other models are needed that can account in a simple way
for propagation effects and effects due to a locally varying
refractive index. The TMM is one such model. Before we
present and discuss the differences, let us briefly recapitulate
the transfer matrix model and extend it to the cases of a
one-dimensional optical lattice aligned with the optical axis
of a linear cavity and of a ring cavity.

A. Link between atom-cavity coupling constant
and single-atom reflection

The TMM describes the variation of the electric-field
amplitudes in both counterpropagating directions along the
optical axis and through optical components or layers of
atomic scatterers [38]. Based on the complex atomic polar-
izability

αpol

ε0
� 6π

k3

−1

i + 2�a/	
, (26)

the single-atom reflection coefficient is defined as

β� = k

πw2

αpol

ε0
= 6

k2w2

−1

i + 2�a/	
. (27)

The resonant reflection coefficient describes how well the res-
onant optical cross section of the atom, σ0 = 3λ2/2π , matches
the cross section of the optical mode, πw2,

−iβ0 = σ0

πw2
= 6

k2w2
= 4g2

δFSR	
= πϒ

F
. (28)

The reflection coefficient multiplied by the free spectral range
of the cavity

δFSRβ� = 6δFSR

k2w2

−1

i + 2�a/	

= g2 �a − i	/2

�2
a + 	2/4

= U0 − iγ0 = Uγ (29)

is just the single-photon light shift combined with the single-
photon Rayleigh scattering rate introduced in Eq. (4).

In the presence of many atoms the atom-field coupling is
collectively enhanced, and we may define a collective atom-
field coupling constant as gN ≡ g

√
N . The phase shift caused

by N atoms is then Nβ�. As we are interested in the atomic
density per lattice period, we replace N by the number of
atoms N1 in each one of the Ns lattice sites. Note that, as our
model is strictly one dimensional, the radial distribution of the
atoms in the optical lattice (whose mode function is assumed
to be the same as the one of the probe laser) does not matter.
Hence, the reflectivity of a single layer containing N1 = N/Ns
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atoms is simply given by

β1 ≡ N1β�. (30)

Typical experiments [12] involve N ≈ 200 000 atoms dis-
tributed over Ns ≈ 300 antinodes of the standing light wave
potential. With the beam waist w specified in Sec. II A 1 and
the lattice wavelength λlat = 689 nm and supposing the atoms
to be radially distributed homogeneously over the beam waist,
this corresponds to an average density of nat ≈ 1011 cm−3.
The resonant optical density of the cloud in the cavity is given
by the ratio between the collective cooperativity ϒN and the
finesse F ,

σ0natNs
λlat

2
= 6N

k2w2
= πϒN

F
≈ 3. (31)

Strong coupling and high optical density are obviously
different concepts. A thin slab of matter may have a high
refraction index |nrfr − 1| 	 0, leading to strong coupling,
but it can still be optically dilute with an optical density less
than 1. Equation (31) tells us that in a cavity characterized by
F 	 1 a high optical density implies strong coupling, but this
is not always the case [39,40].

B. Transfer matrix model for normal mode splitting

The goal of the following derivations is to show that,
applied to the coupled system of a cavity interacting with a
cloud of atoms, the TMM not only reproduces the well-known
normal splitting, but also conveniently allows us to calculate
features arising from atomic order or disorder at high opti-
cal densities. The TMM extends beyond the capabilities of
the ODM by including the aspects of light-mediated inter-
atomic interactions related to the distance between the atoms
[29,30]. In particular, one-dimensional photonic band gaps are
conveniently described within the transfer matrix formalism
[13–15].

To prepare the ground for the TMM, let us derive the
relevant transfer matrices for our coupled atom-cavity system.
We proceed by steps recapitulating the formalism for (i) the
reflection and transmission of an empty linear cavity, (ii) a
linear cavity containing a 1D coaxial optical lattice, (iii) the
intensity distribution inside the linear cavity, and (iv) a ring
cavity with two coupled counterpropagating modes.

1. Airy formula from the TMM for an empty linear cavity

A transfer matrix T transforms a pair of field amplitudes
belonging to counterpropagating modes known at one point
(1) of the optical axis into a pair at point (2) according to(

α
(2)
+

α
(2)
−

)
= T1→2

(
α

(1)
+

α
(1)
−

)
with T1→2 =

(
T 11 T 12

T 21 T22

)
. (32)

The corresponding scattering matrix S is defined by(
α

(2)
+

α
(1)
−

)
= S1↔2

(
α

(1)
+

α
(2)
−

)
with S1↔2 =

(
S11 S12

S21 S22

)
(33)

and related to the transfer matrix via partial inversion

S1↔2 = 1

T 22

(
T 11T 22 − T 12T 21 T 12

−T 21 1

)
, (34)

FIG. 8. Same scheme as in Fig. 1 but adapted to illustrate the
TMM applied to (a) a linear cavity and (b) a ring cavity. Blue num-
bers refer to specific positions z on the optical axis, where the electric
field α

(z)
± is evaluated (see the text for details). Positive (negative)

subscripts correspond to clockwise (counterclockwise) propagation.

where T i j are the matrix elements of T1→2,

T1→2 = 1

S22

(
S11S22 − S12S21 S12

−S21 1

)
, (35)

where Si j are the matrix elements of S1↔2.
Let us now consider an empty linear cavity of length L.

With the free spectral range δFSR ≡ c/2L, we can write the
wave vector of the incident probe light as

k = ω

c
= ωa + �a

c
= ωc + �c

c
= Nmod2πδFSR + �c

c
, (36)

with Nmod ∈ N. The transfer matrix for free-space propaga-
tion over a distance z located somewhere between the cavity
mirrors then reads

Pz(�c) =
(

eikz 0
0 e−ikz

)
. (37)

Hence, PL(�c) is the propagation matrix between the cavity
mirrors with eikL = ei�c/2δFSR .

The scattering matrix for a beam splitter with transmissiv-
ity tBS and reflectivity rBS is

SBS =
(

tBS −rBS

rBS tBS

)
(38)

when absorption losses can be neglected, in which case,
det SBS = 1. Applied to the first input coupling mirror of the
linear cavity sketched in Fig. 8(a),(

α
(1)
+

αout
−

)
= SBS

(
αin

+
α

(1)
−

)
. (39)

Using the prescription (35), we obtain from (38) the transfer
matrix

TBS = 1

tBS

(
1 −rBS

−rBS 1

)
. (40)

For the mirror at the position (1) (z = 0) and the second
mirror at (4) (z = L), we thus get [see labeling introduced in
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Fig. 8(a)](
α

(1)
+

α
(1)
−

)
= TBS1

(
αin

+
αout

−

)
,

(
α

(4)
+

α
(4)
−

)
= TBS2

(
αout

+
αin

−

)
, (41)

where αin
+ = η/κ and αin

− = 0. Intensity losses (as they may
occur, e.g., upon passage through additional optical compo-
nents or reflection at additional cavity mirrors with reflectivity
rls) are described by

Tls =
(±rls 0

0 ±r−1
ls

)
, (42)

where the negative signs account for 180◦ phase shifts upon
reflections.

The total transfer matrix of the empty cavity is obtained by
concatenation,

Ttot = T −1
BS2PL(�c)TBS1. (43)

Finally, in order to express the output as a function of the input
signals, we reconvert to the scattering matrix of the cavity as
a whole, (

αout
+

αout
−

)
= Stot

(
αin

+
αin

−

)
, (44)

exploiting the prescription (34). The transmission spectra are
now obtained by setting αin

− = 0 in (44) and calculating

T =
∣∣∣∣αout

+ (�c)

αin+

∣∣∣∣
2

. (45)

The transfer matrix (43), and hence the scattering matrix in
(44), only depends on experimental parameters and allows us
to calculate the response of the atom-cavity system to any
incident field. An analytical calculation of T with the given
transfer matrices reproduces the well-known Airy formula for
the empty cavity.

2. Transmission from the TMM for a cavity containing
an optical lattice

Now we consider a cloud of atoms with resonance fre-
quency ωa trapped inside a standing light wave potential tuned
to a frequency ωlat. The atoms interact with a linear optical
cavity, whose nearest mode is at the frequency ωc. The cavity
mode is collinearly pumped by a probe laser frequency ω. The
transfer matrix for the atomic cloud is expressed in terms of
the single atomic layer reflectivity derived in (30),

A =
(

1 + iβ1 iβ1

−iβ1 1 − iβ1

)
. (46)

The total transfer matrix for the atomic cloud is then

Atot(�c) = [APλlat/2(�c)]Ns . (47)

Now the complete total transfer matrix for a linear cavity con-
taining an optical lattice can be obtained simply by extending
Eq. (43),

Ttot = T −1
BS2Pa(�c)Atot(�c)Pa(�c)TBS1, (48)

where a is the distance between the optical lattice and the
input coupling mirror [see Fig. 8(a)].

FIG. 9. Transmission spectra as a function of laser detuning and
lattice constant calculated for (a) and (b) a linear cavity and (c) and
(d) a ring cavity from (a) and (c) the ODM and (b) and (d) the TMM.
The mean reflectivity of the cavity mirror is reduced to 90% and
the coupling constant increased to g = 10	. The slight increase of
transmission in the four corners of (a) and (b) comes from normal
mode splitting.

As already mentioned, all graphs obtained from the ODM
and exhibited in Sec. II are perfectly reproduced by the TMM,
provided the optical density of the atomic cloud is low. De-
viations are observed in the presence of strong absorption
or reflection, where strong means that the light beam suf-
fers noticeable attenuation along its path through the cavity.
Figures 9(a) and 9(b) compare transmission spectra obtained
from the ODM and the TMM for the same parameters. To
work out the differences of both models, the coupling constant
g has been increased and the mean cavity mirror reflectivity
decreased. Apparently, the TMM predicts additional reso-
nances at smaller detunings �c/	. Increasing g enhances
the optical density; the role of the mirror reflectivity will be
unraveled in Sec. IV B.

3. Intensity inside the cavity

To calculate the intensity distribution along the optical axis
inside the cavity, we assume that the optical lattice is located
between the points (2) and (3) of the optical axis, as indicated
in Fig. 8(a). The transfer through the entire structure (linear
cavity plus lattice) up to a point z is expressed as

(
α

(z)
+

α
(z)
−

)
= T(z)

(
αin

+
αout

−

)
= X(z)

(
αin

+
αin

−

)
, (49)

where T(z) is the transfer matrix concatenation containing
the input coupler and all elements located between the input
coupler and the position z of the optical axis and

X(z) ≡ T(z)

[(
1 0
0 0

)
+

(
0 0
0 1

)
Stot

]
. (50)
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Using the information that the cavity is only pumped from
one side αin

− = 0, we get explicitly

(
α

(z)
+

α
(z)
−

)
= T(z)

(
1

−T 21/T 22

)
αin

+ . (51)

The sum of the counterpropagating field amplitudes at posi-
tion z normalized by the incident field amplitude is

α
(z)
+ + α

(z)
−

αin+
= T 11

(z) + T 21
(z) − T 21

tot

T 22
tot

(T 12
(z) + T 22

(z) ). (52)

C. Transfer matrices for an optical lattice inside a ring cavity

The transfer matrix formalism can be applied to ring cavi-
ties in an analogous fashion as for linear cavities. A difference
is however that one has to deal with two independent counter-
propagating modes, which are only coupled in the presence of
atoms scattering light between the modes.

1. Transfer matrices for ring cavities

To calculate the intensity distribution inside and behind
a laser-pumped ring cavity, we use the S matrices for the
incoupling beam splitter at point (7),(

α
(1)
+

αrfl
+

)
= Sic

(
αin

+
α

(6)
+

)
,

(
α

(6)
−

αrfl
−

)
= Sic

(
αin

−
α

(1)
−

)
, (53)

and for the outcoupling beam splitter at point (8), as indicated
in Fig. 8(b),(

α
(5)
+

αout
+

)
= Shr

(
0

α
(4)
+

)
,

(
α

(4)
−

αout
−

)
= Shr

(
0

α
(5)
−

)
, (54)

with the beam splitting SBS matrix given in (38). The T
matrices for propagation along the ring cavity’s optical axis
and across the optical lattice are the same 2 × 2 matrices
introduced for linear cavities: Eq. (32) is the T matrix de-
scribing the clockwise transfer of a laser beam inside a ring
cavity from point (1) to point (2), and Eqs. (37) and (46) de-
scribe free-space propagation and reflection at atomic layers,
respectively. Finally, the matrix (42) describes losses at the
third mirror of the ring cavity. The transfer matrix describing
a complete round-trip through the ring cavity from point (1)
to point (6),

T1→6 ≡
(

R11 R12

R21 R22

)
, (55)

is derived by concatenation of transfer matrices in the same
way as demonstrated for the linear cavity in Eq. (48). Com-
plying with the notation of Fig. 8(b) we write(

α
(6)
+

α
(6)
−

)
= T1→6

(
α

(1)
+

α
(1)
−

)
. (56)

Combining this with Eq. (53), we obtain a system of six inde-
pendent equations. Eliminating the field amplitudes at point

(6) from these equations, we are left with⎛
⎜⎜⎜⎜⎜⎝

(1 + ricR11)α(1)
+ + ricR12α

(1)
−

−ticR11α
(1)
+ − ticR12α

(1)
− + αrfl

+
R21α

(1)
+ + (ric + R22)α(1)

−
−ticα

(1)
− + αrfl

−

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

ticαin
+

ricα
in
+

ticαin
−

ricα
in
−

⎞
⎟⎟⎟⎟⎟⎠. (57)

The first and third equations yield

Y−1

(
α

(1)
+

α
(1)
−

)
=

(
αin

+
αin

−

)
(58)

with

Y−1 = 1

tic

(
1 + ricR11 ricR12

R21 ric + R22

)
, (59)

or, resolved by the intracavity field amplitudes,(
α

(1)
+

α
(1)
−

)
= Y

(
αin

+
αin

−

)
. (60)

The matrix Y describes how the field amplitudes at point (1)
just behind the input coupler depend on both incident light
fields αin

± . However, it is neither a transfer nor a scattering ma-
trix, as it depends on all components inside the ring cavity via
the coefficients Ri j of the complete round-trip matrix T1→6.

2. Intensity inside and outside the cavity

Now, beginning at point (1), we can express the field am-
plitudes at any point simply by concatenating T matrices. For
an arbitrary location z, we have(

α
(z)
+

α
(z)
−

)
= T1→zY

(
αin

+
αin

−

)
. (61)

For the fields outcoupled at points (4) and (5) we get(
αout

+
αout

−

)
= thr

(
α

(4)
+

α
(5)
−

)
. (62)

Hence, (
αout

+
αout

−

)
=

(
thr 0

0 − thr
rhr

)
T1→4Y

(
αin

+
αin

−

)
. (63)

To calculate the reflected amplitudes we consider the second
and fourth equations in (57),

−tic

(
R11 R12

0 1

)(
α

(1)
+

α
(1)
−

)
+

(
αrfl

+
αrfl

−

)
= ric

(
αin

+
αin

−

)
(64)

Solving by the reflected amplitudes,(
αrfl

+
αrfl

−

)
≡ X

(
αin

+
αin

−

)
, (65)

with

X = ricI + tic

(
R11 R12

0 1

)
Y
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= 1

D

(
(ric + R11)(ric + R22) − R12R21 t2

icR12

−t2
icR21 (1 + ricR11)(1 + ricR22) − r2

icR12R21

)

(66)

and the abbreviation

D ≡ det

(
ric + R22 −ricR12

−R21 1 + ricR11

)
. (67)

Finally, to evaluate the fields (61), (63), and (65), we still need
to calculate the components of the round-trip matrix,

T1→6 = P (d )TlsT1→4, (68)

with

T1→4 = P (a)

[
AP

(
λlat

2

)]Ns

P (a)TlsP (d ), (69)

where the distances a and d are defined in the scheme of
Fig. 8(b).

The expressions (63) and (65) allow us to calculate the
transmission and reflection signals from the expressions (10)
based on the TMM. For the parameters used to calculate the
spectra of Figs. 4 and 5 based on the ODM, we reproduce
exactly the same spectra with the TMM. Just as for the case of
linear cavities, the two models deviate from each other as soon
as the optical density is large. Figures 9(c) and 9(d) compare
transmission spectra obtained from the ODM and the TMM
for the identical parameters. Similarly to the case of a linear
cavity, the TMM predicts additional resonances at smaller
detunings �c/	, which will be discussed in more detail in
Sec. IV B.

IV. PHOTONIC BANDS IN CAVITIES

A. Light propagation through a cavity

In order to understand better the impact of absorption and
phase shifts caused by the optical lattice, we use our transfer
matrix model to calculate the local light intensity along the
optical axis based on Eqs. (52) and (61) for a linear cavity and
a ring cavity, respectively. Indeed, the transfer matrix formal-
ism outlined in Secs. III B and III C allows us to calculate not
only the bulk reflectivity of the 1D optical lattice, but also the
local intensity I ∝ |α(z)

+ + α
(z)
− |2 at a point z inside the lattice

[14].
We proceed in steps (1) analyzing the passage of light

through an optical lattice in free space, (2) including thermal
disorder, (3) studying the role of spontaneous emission, (4)
observing the formation of a photonic band gap, and (5) dis-
cussing the impact of a cavity on this band structure.

1. Light propagation through an optical lattice in free space

In free space (without a cavity), the intensity drops across
an optical lattice because of spontaneous emission. The thick
blue curves shown in Fig. 10 for two different lattice detunings
�lat represent the interference between the incident and the
reflected beams, evaluated only at the exact positions of the
atomic layers which are assumed to be perfectly thin. If the
cloud is disordered, the intensity of a light beam crossing the
cloud drops according to the Lambert-Beer law. If the cloud

FIG. 10. In free space the intensity decreases exponentially over
an infinite lattice. For a finite lattice (here Ns = 300), the intensity
approaches a constant value at the end of the lattice. The graphs
show the intensity evaluated at each lattice site (blue solid lines), the
exponential decay due to absorption in a homogeneous cloud, i.e.,
the Lambert-Beer law (red dash-dotted lines), and the transmission
at the end of a lattice with j layers (cyan solid lines). For compar-
ison, green dashed lines represent the hyperbolic decay following
Ohm’s law, calibrated to the Lambert-Beer law. The parameters are
�a = 	/5, average density n = 1011 cm−3, and (a)�lat = 2 × 108	

and (b)�lat = 5 × 109	.

is ordered, the intensity shows an additional oscillatory be-
havior. The oscillation is due to multiple reflections between
adjacent atomic layers. Indeed, at sufficiently high optical
density, light can be scattered into the backward direction. The
interference of the light backscattered from different atomic
layers with the forward-propagating light creates a modulated
standing light wave whose contrast and modulation period
depend on the periodicity and length of the optical lattice.

2. Inclusion of thermal disorder

Until now, we assumed in all simulations that the atomic
layers are perfectly thin infinite planes characterized by ra-
dially homogeneous reflectivity. In Sec. II A 3, however, we
showed that at finite temperature, due to thermal atomic mo-
tion, the layers have a finite width given by Eq. (14) and the
1D atomic density distribution is better described by Eq. (15).
This axial spreading and even longitudinal disorder can also
be accounted for in the TMM [14].

We do this by subdividing each period of the optical lattice
into Nss = 30 sublayers of width �z populated with atoms
according to a Gaussian distribution, i.e., we discretize the
Gaussians in the density distribution (15),

n(z) →
Nss∑
i=1

n(zi)θ (z − zi )θ (zi + �z − z), (70)

where θ denotes the Heaviside function.
The quality of the atomic ordering has an important impact

on absorption and phase shifts, as we will see in the following.

3. Spontaneous emission along the lattice

In a cavity, the field intensities |α(z)
± |2 can vary along the

optical axis due to multiple reflections between atomic layers
of the optical lattice. However, because of energy conservation
we would expect the total flux of energy |α(z)

+ |2 − |α(z)
− |2 to be

the same all along the optical axis and even after transmission
through the whole cavity. This is however not true in the
presence of spontaneous emission, which is strong wherever
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FIG. 11. (a) Intensity drop along an optically dense optical lat-
tice inside a linear cavity. (b) Close-up of (a). The gray-shaded
areas in (a) visualize the cavity mirrors and the vertical black
dash-dotted lines delimit the optical lattice. The gray-shaded area
in (b) visualizes the scaled atomic density distribution assumed
to be Gaussian at every lattice site. The colored lines show |α+|2
(red), |α−|2 (green), and |α+ + α−|2 (blue). The yellow-shaded area
shows d (|α+|2 − |α−|2)/dz. The pink line shows the scaled over-
lap n(z)|α+ + α−|2. The parameters differing from those given in
Sec. II A 1 are Ns = 200, Nss = 30, z̄ = 16λlat, �lat = 400 × 2πδFSR,
�c = �a = 5	, and Rmir = 90%.

the spatial overlap between the light intensity |α(z)
+ + α

(z)
− |2

and the atomic density n(z) is large. Hence, in the case of a
dense atomic cloud the intensity |α(z)

+ |2 − |α(z)
− |2 drops along

the optical axis due to spontaneous emission,

d

dz
(|α(z)

+ |2 − |α(z)
− |2) ∝ n(z)|α(z)

+ + α
(z)
− |2. (71)

This relationship is confirmed by the simulations exhibited in
Fig. 11 for a linear cavity and in Fig. 12 for a ring cavity.

Similar to the case of an optical lattice in free space
(cf. Fig. 10), the intensity inside a cavity is not uniformly
distributed along the optical axis when an optical lattice
is present. However, the boundary conditions are different,

FIG. 12. Intensity drop along an optically dense optical lattice
inside a ring cavity. The color coding and the parameters are the same
as in Fig. 11. The numbers above (a) refer to the positions in the ring
cavity indicated in Fig. 8(b).

FIG. 13. Reflection spectra of a linear cavity showing the pho-
tonic band structure as a function of laser detuning and lattice
constant calculated from (a) the ODM and (b)–(d) the TMM for
various reflectivities Rmir of the mirrors, as indicated in each panel.
The parameters are the same as in Fig. 3 except for g = 10	.

because the cavity mirrors reflect a large part of the light back
into the optical lattice. In the case of a linear cavity, we thus
expect the formation of a standing light wave which, inside
the optical lattice, is modulated due to backscattering from
the atomic layers. Additionally, the intensity drops across the
optical axis due to spontaneous emission losses, as can be
noticed in Figs. 11 and 12.

4. Readjusting the cavity length

The power of light injected into a resonant cavity is en-
hanced by factor of F/π , but it is suppressed off resonance.
Now a dense optical lattice will cause the cloud’s refraction
index to deviate from 1 and hence the phase front of the light
beam to be advanced or delayed, depending on its detun-
ing from the atomic resonance. This modifies the resonance
condition for the cavity. In practice, this can be avoided by al-
lowing the cavity length to readjust to the resonance condition
optimizing for maximum transmission, e.g., via piezoelec-
tric transducers controlling the position of cavity mirrors.1

Note that, in the linear regime (below saturation) adjusting
the resonance condition only increases the amplitude of the
intracavity light, but not the profile of the intensity distribution
along the optical axis.

B. Cavity as a spectrum analyzer for multiple reflections

Let us now apply the TMM to the calculation of trans-
mission and reflection spectra, as we already did with the
ODM in Sec. II B. Interestingly, we find that the cavity has the
tendency to fade out photonic band gaps. This can be observed
in Fig. 13, which show the reflection spectra of a pumped
linear cavity. The spectrum in Fig. 13(a) is calculated for

1Note that in linear cavities it is necessary to optimize the position
of both mirrors, while in ring cavities one mirror is sufficient.
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low cavity finesse (Rmir → 0) corresponding to propagation
in free space. The photonic band structure is clearly visible as
a reflection band whose width depends on the lattice constant
measured by �lat. For Figs. 13(b)–13(d), as the cavity finesse
is gradually increased, the reflection band dissolves into a dis-
crete spectrum of narrow resonances. Finally, for the spectrum
in Fig. 13(d), the TMM and the ODM give almost the same
results (not shown).

To understand this behavior, we need to recall that photonic
bands result from multiple reflections at consecutive atomic
layers. Every backreflection of the probe laser beam from a
particular layer leads to a well-defined phase shift. This phase
shift accumulates with the number of reflections, so the total
phase shift depends on the number of backscattering events
per round-trip. At high optical density, a large number of
backscattering events is possible, so the light reflected from
the entire lattice is composed of many different phases which,
in transmission, leads to destructive interference over a wide
range of frequencies, thus forming a photonic stop band.

The presence of atoms in the cavity introduces a refrac-
tion index, which delays or advances the phase front of the
light beam circulating in the cavity, which in turn modifies
the resonance condition for the cavity. With the parameters
specified in Sec. II A 1, the reflectivity of one atomic layer
is N1β0 ≈ 0.01, corresponding to a shift on the cavity’s reso-
nance frequency of

δFSRN1β0 ≈ 2π × 12.7 MHz, (72)

which is on the order of the cavity’s transmission linewidth
κ/2π ≈ 3.4 MHz.

Additionally, as the total phase shift per round-trip depends
on the number of backscattering events and the cavity can
only be resonant for very specific total phase shifts, it acts
as a filter only allowing for a specific number of reflections
within the optical lattice. This number can be tuned via the
cavity’s length. In other words, the cavity operates like a
spectrum analyzer only allowing for very specific reflection
paths. For example, a cavity could be tuned to only allow for
two reflections at adjacent atomic layers.

This view is supported by simulations exhibited in Fig. 14
showing transmission spectra of a linear cavity. Figure 14(a)
is obtained for vanishing finesse (no cavity). Figures 14(b)–
14(h) are calculated for Rmir = 80% but different lengths of
the cavity equally distributed within L + n

7
λlat
2 , where n =

1, 2, . . . , 7. Finally, Fig. 14(i) shows the sum of all spectra
exhibited in Figs. 14(b)–14(h).

Figures 14 exhibit many features revealing a rich under-
lying dynamics. (i) Under the influence of a linear cavity,
the photonic band spectrum [Fig. 14(a)] dissolves into narrow
fringes meandering between �lat = −∞ and +∞ with a char-
acteristic oscillation period corresponding to the modulation
of the bunching parameter (12) plotted in Fig. 2(a), that is,
the modulation period is given by Nsλlat = nλ for an integer
n. (ii) The amplitude and width of each fringe increase with
its distance from resonance at �a = 0. (iii) Summing up a
sufficient number of spectra, such as those of Figs. 14(b)–
14(h), we recover the full photonic band spectrum, that is,
with an increasing number of spectra contributing to the
sum or reducing the resolution of the cavity by diminishing
Rmir, Fig. 14(i) will resemble more and more Fig. 14(a).

FIG. 14. Transmission spectra T+ ∝ |αout
+ |2 of a linear cavity for

the same parameters as in Fig. 13. The photonic band structure is
observed for (a) Rmir = 0.1% and (b)–(h) Rmir = 80%. The spectra in
(b)–(h) are calculated for different lengths of the cavity. (i) Sum of all
spectra. (b′), (e′), and (h′) Phase profiles calculated from Im(ln αout

+ )
corresponding to the spectra in (b), (e), and (h). The abrupt transi-
tions are caused by phase wrapping.

(iv) Plotting the phase profiles of the transmitted light
Im(ln αout

+ ) in Figs. 14(b′), 14(e′), and 14(h′), we observe that
the fringes separate spectral regions of opposite phases. This
points to the fact that every fringe corresponds to a different
number of multiple reflections: The outer fringes involve two
reflections and the fringes in the inner region of the band gap
involve several.

It is interesting to note that although across Figs. 14(b)–
14(h) the cavity length is varied over an entire free spectral
range and that for R = 80% the finesse is very poor (F = 14
and κ/2π = 270 MHz), the cavity remains very selective for
the number of reflections and basically acts like a filter for
specific beam trajectories out of the multitude of possible
trajectories whose interference is at the origin of the photonic
band structure.

The calculations shown in Fig. 14 were realized for sym-
metric coupling, as studied in Fig. 3(a), in which case the
normal modes are far away from the photonic band spectrum.
In contrast, for antisymmetric coupling [cf. Fig. 3(b)] the
normal mode splitting, vanishing close to �lat � 0, interferes
with the photonic band spectrum. Finally, we stress that simi-
lar results can be obtained for ring cavities.
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V. CONCLUSION AND OUTLOOK

State-of-the-art experiments studying the interaction of op-
tical lattices with linear or ring optical cavities are able to
reach parameter regimes characterized by high optical den-
sities [12]. To describe such experiments in the limit of weak
driving, we applied two theoretical approaches in this work:
the open Dicke model and the transfer matrix model. Both
models have their advantages and limitations.

A. Scope of the ODM and TMM

The ODM is perfectly suited for the description of atom-
cavity interactions, e.g., normal mode splittings, in cases of
homogeneous or perfectly periodically ordered clouds. Dis-
ordering due to thermal motion or incommensurate lattice
periods can be accounted for; the latter case has even practical
utility for the detection of Bloch oscillations. Although this
work is restricted to the low-saturation regime, the ODM can
also be applied in cases of high saturation [12].

The notion of a predetermined cavity mode function shap-
ing the atom-field coupling constant is a basic concept of the
ODM: The ODM assumes that the dynamics of every atom
depends on that of the other atoms only through their coupling
strength to the cavity mode, but it does not depend on the
relative positions of the atoms. For this reason, the ODM
does not hold for the regime of high optical density, where an
atomic cloud can produce a shadow for atoms located further
downstream along the path of a laser beam.

In contrast, in the TMM, the dynamics of an individual
atomic layer (axially thin but radially extended atomic cloud)
is related not to a global cavity mode function but only to
the light field amplitudes in adjacent layers. Within the linear
low-saturation regime and within a mean-field approximation,
the atomic degrees of freedom can be removed from both
models, from the ODM expressed in Eq. (2) [and (3) for
ring cavities] and from the TMM culminating in Eq. (44)
[and (63)]. In this linear regime, the TMM coincides with the
ODM as long as the optical density is kept low. However, the
TMM also applies for high optical densities and predicts new
phenomena.

Indeed, the TMM provides insight into the formation of
photonic band gaps and their spectral analysis: Light reflected
from atoms in a disordered cloud suffers arbitrary phase shifts,
which leads to destructive interference. In contrast, when the
cloud is periodically ordered in an optical lattice and suffi-
ciently dense, an incident light beam will suffer a discrete
number of reflections and hence an integer number of pos-
sible phase shifts. In free space we observe the formation of
photonic band structures. The presence of a cavity, however,
imposes resonance conditions which can only be satisfied by
certain paths. Tuning the cavity resonance frequency, we can
thus filter out specific paths and study their contribution to the
formation of the photonic band.

In the bad cavity limit, the edges of photonic bands can
be quite steep (scaling like 	, while the steepness of a cavity
transmission curve typically scales as κ). This could be useful
for witnessing atomic ordering with much higher sensitivity
than normal mode splitting.

B. Future investigations

1. Backaction of light on atomic bunching

The presented simulations mostly assumed immobile
atoms. Experimentally, this can be guaranteed by confining
them in a very deep lattice. Photonic recoil induced by the
probe light can then be neglected, and residual thermal motion
of the ultracold cloud can be treated as done in Sec. II A 2.

The situation is different when quantum motion is studied,
for instance, the Bloch oscillations discussed in Sec. II C.
Then, even in the tight-binding limit, the optical lattice should
be relatively shallow to enable quantum tunneling between
adjacent lattice sites. Under such circumstances the motional
dynamics of the atoms becomes very sensitive to photonic re-
coil. Upon (Bragg) reflection the atomic cloud receives twice
the photonic recoil, which leads to acceleration. In contrast,
upon transmission of light through the atomic cloud, informa-
tion on the atomic distribution is imprinted on the light beam
as a phase shift, but no recoil is imparted.

Other interesting perspectives arise from the mutual in-
terplay between the intracavity light field and the atomic
ordering. The intracavity field amplitudes (7) and (8) depend
on atomic bunching and thus are essentially governed by
effective atom numbers Neff ≡ Nb0,±. If bunching can now
be made a dynamical parameter that can be controlled or ma-
nipulated by the cavity light field, then a feedback mechanism
can be implemented which may be harnessed for engineering
nonlinear dynamics. This has been exploited in the past in
a variety of systems. Prominent examples are the collective
atomic recoil laser and similar systems [41–43] or the Dicke
phase transition in which the nonlinear dynamics leads to
atomic self-ordering. A recent work [23] proposes to amplify
Bloch oscillations of effective atom numbers via feedback
from cavity fields. Control of the effective atom number can
also be engineered in multimode light fields selectively inter-
acting with several atomic ground states [31,44].

2. Towards a full quantum model for saturated
optically dense clouds

Frequency shifts of normal mode spectra induced by sat-
uration, as predicted by the ODM, can also be taken into
account in the TMM, since with the saturation parameter
given by

s(�a) = 2�2

4�2
a + 	2

(73)

the polarizability can be generalized to
αpol

ε0
= 6π

k3

−	

i + 2�a/	

1

1 + s

= 6π

k3

i − 2�a/	

1 + 4�2
a/	

2 + 2�2/	2
. (74)

It is however important to realize that this procedure misses
saturation-induced nonlinearities and bistabilities [12], which
therefore are beyond the TMM. Indeed, the description of
the atomic cloud as a classical medium characterized by a
refractive index implies that it is not saturable.

Consequently, the effects of saturation were not treated
in this work, although saturation of the atomic transition
may tremendously impact the behavior of strongly pumped
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systems, in particular, when a narrow atomic transition is
used. As long as the optical density stays low, the nonlinear
ODM can be used [12], but for high optical densities this
model fails, as shown in this work, and the same is true
for generalizations based on input-output theories [45] not
containing atomic variables.

On the other hand, the problem with the TMM is that, when
the atomic medium becomes transparent under saturation, it
reduces its optical density, which breaks the linearity of the
transfer matrix concatenation procedure. Below saturation one
can define a generalized mode function shaped not only by
the cavity geometry but also by the positions and reflectivities
of intracavity scatterers. This is what the TMM provides: a
bulk scattering matrix, which only depends on experimental
parameters and whose response function delivers the dynam-
ics of the system, even if the atomic medium is dense. Above
saturation this is not possible, because transmission and re-
flection dynamically depend on the states of the atoms and
therefore the TMM must fail to describe saturation and quan-
tum correlations.

In any case, one must resort to more sophisticated mod-
els handling quantum mechanically the interaction between
a dense cloud and a saturating beam inside a cavity with
partially reflecting mirrors. The ODM only allows the atoms
to interact via the cavity field. This however is not a good
assumption in the dense regime, which is characterized by the
fact that atoms can absorb radiation emitted by other atoms,
a fact that is accounted for by the TMM, where subsequent
atomic layers can exchange photons directly via reflections.
In free space these direct interactions are included as dipole-
dipole interactions via [46]

ĤIsing =
∑
i 
= j

�i j σ̂
+
j σ̂−

i , (75)

where σ̂±
j denote the standard Pauli matrices describing

(de)excitation of the jth atom and �i j the interatomic cou-
pling strengths.

Clearly, the inclusion of dipole-dipole interactions is
beyond the Dicke model. Additionally, in a cooperative en-
vironment, such as a cavity, these interactions are modified,
as well as the interaction of the atoms with the vacuum
modes. The starting point for setting up the Hamiltonian
must therefore be before the Weisskopf-Wigner treatment of
spontaneous emission leading to the Lindbladian [47]. Intro-
ducing the field operators âkλ and â†

kλ for the annihilation

and creation, respectively, of photons in a radiation mode
(k, λ), the collective interaction Hamiltonian for an ensemble
of atoms interacting via dipole-dipole interactions, driven by
laser beam and coupled to every vacuum mode, is

Ĥ = h̄
∑
k,λ

∑
j

(σ̂+
j + σ̂−

j )(gkλâkλ + g∗
kλâ†

kλ), (76)

where the coupling strength gk,λ is shaped by the presence of
a cooperative environment, that is, the boundary conditions
imposed by the cavity mirrors make gkλ anisotropic [48,49]
and spectrally modulated by the cavity’s resonance condi-
tions. A proper Weisskopf-Wigner treatment then allows us
to calculate the density of states shaped by the presence of
the cavity, the cavity’s Purcell factor (also called cooperativ-
ity or structure factor), and the cooperative Lamb shift. This
however is beyond the scope of the present paper.

Despite its difficulties, a full quantum model working for
dense ensembles of saturable scatterers inside an optical cav-
ity is highly desirable. To give just one example within the
scope of this work, it is conceivable that in the nonlinear
regime the cavity filtering of photons having suffered exactly
two reflections at adjacent atomic layers can be harnessed for
protocols for the generation of quantum correlations leading
to superradiant lasing [50–53].
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